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Abstract—This paper describes the machine learning
methods and modeling used to predict continuous mea-
sures of Parkinson’s Disease Severity from voice recordings
of patients. Two datasets are analyzed. Bagged decision
trees (random forests) resulted in an improvement on
the previous model accuracy for one dataset, predicting
severity measures at 2% accuracy on a 0-176 scale. Other
methods are described for both datasets, as well as the
limitations of each.

I. INTRODUCTION

Parkinsons disease is a progressive disorder of the
central nervous system that causes loss of control of
movement. Early symptoms include tremors in hands,
and slowed, slurred speech, with symptoms developing
into more uncontrollable, full-body tremors. Changes
in memory and cognition also occur. As many as 6.3
million people live with Parkinsons worldwide [1], mak-
ing it the second most common neurologic condition
after Alzheimer’s disease. While many diagnosed with
Parkinson’s can go on to live for many more years, their
quality of life is diminished.

There is no cure for Parkinson’s, but it may be possible
to slow down or even prevent the progress of this
disease by detecting it early. There are various methods
of brain imaging for early Parkinsons detection, but
they are expensive [2]; there is a need for inexpensive,
scalable diagnostic techniques. Recent developments in-
clude tracking postural gait and sway [3] and identifying
anomalies in speech recordings of patients [4], [5]. This
second technique may prove sufficiently scalable. Dr.
Max Little and PatientsLikeMe, an online communica-
tion platform for PD patients and simultaneous research
platform, have joined with Sage Bionetworks to collect
data using internet-based voice recordings, with the
intention of proving that crowdsourcing approaches can
potentially predict self-reported PD severity measures.
Their dataset was released to us as part of a dry-run
for their public competition which is to be launched this
coming summer.

This paper describes the models and methods we used
to predict PD severity measures from voice features on
the Synapse.org dataset, and also on the University of
California Irvine ‘Parkinsons Telemonitoring Dataset’,
another dataset containing PD severity measures and
voice features, though non-internet based. Reasons for
analyzing both datasets are described, as is a reflection
on how our work contributes to the scope of the larger
Synapse.org project.

II. UNIVERSITY OF CALIFORNIA IRVINE

PARKINSON’S TELEMONITORING DATASET

The UCI Parkinson’s Telemonitoring Dataset is the
result of a six month trial on 42 Parkinson’s Disease
patients. Recordings of sustained vowel phonations were
recorded weekly by the patients over the course of 3-6
months from Intel Corporations telemonitoring system,
the At-Home Testing Device (AHTD), which is designed
to track PD progression including speech tests. This
dataset gives us a high confidence in the quality of the
voice features. Furthermore, it includes three clinician-
evaluated records of the patients’ full UPDRS scores
(Unified Parkinson’s Disease Rating Scale) This UPDRS
score was recorded by a physician on three occassions:
at the beginning of the trial, after 3 months, and after 6
months. Then, at each timestamped voice recording, the
linear interpolation of the pdrs between the real values
was associated.

In total, there are approximately 6,000 recordings from
the 42 patients, a sizeable dataset compared to other
datasets of voice features from PD patients. There are
16 voice features - acoustically extracted measures of
the patient’s recordings - available in this dataset. Direct
recordings from the patients are not publically available.

The research group responsible for organizing this
dataset reported model accuracy within approximately
7.5 points of the total UPDRS score, which in this dataset
can be evaluated up to 176 points, though the highest
reported value was 55.
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A. Random Forests, and Moving Average Inclusion

R’s randomForest package, which implements Leo
Breimans Random Forests [6], were used to predict
the interpolated UPDRS score. In Random Forests, a
group of decision tree classification or regression trees is
trained and bagging then combines the predictions. Each
tree selects a portion of the features at random as well as
a random resampling of the data to train on. The three
parameters that were modified were the number of trees
trained, and the number of variables randomly sampled
at each split of the tree.

Inclusion of all of the features to predict total-UPDRS
score resulted in a best model with an RMSE of 8.38.
The following parameters were used to obtain this tree:
506 trees, 8 features included at each split of the tree.

Both ridge regression models and LASSO models
were fit as feature selection methods, using the glmnet
package in R. We split the samples into a training set
and a test set in order to estimate the test error of ridge
regression and the LASSO. For both models, ten-fold
cross-validation we used select the best value of the
tuning parameter λ. The lowest test RMSE associated
with ridge regression and the chosen λ was 10.627, and
for LASSO was 10.31, which are both an improvement
on simply fitting a model with just the intercept, for
which the test MSE is 10.78. However, since the LASSO
resulted in such a substantial improvement in MSE,
even over the ridge, the twelve features selected by this
model were included in subsequent random forests. As
a direct comparison, running a Random Forests model
with only these features results in an RMSE of 8.33, a
small improvement on when all features were included.

Moving Average. One advantage of this dataset is
that it includes time-series data for each patient. To see if
slightly smoothed voice measures improved our Random
Forests model, we calculated a moving average variable
for each of the LASSO-selected features (testing a range
of moving average windows from 2-20 samples), and
included those new features with the original LASSO-
selected voice features in our Random Forests testing.

This tactic resulted in us beating the accuracy of
the work of the original researchers. We tried moving
averages centered around the predicted UPDRS point,
and also solely a lagged moving average. While the
centered window performed only slightly better than
the lagged window, the results are very comparable.
The best performance this tactic was achieved using the
parameters of 502 trees, 8 features included at each split
of the tree, used a centered window, and resulted in an
RMSE of 1.968, which is a great improvement on our
prediction in comparison to not including the moving

Fig. 1. Comparison of improvements in Random Forest RMSE based
on window size of moving averages. The window for the moving
average was both centered and solely lagged.

average features.
Also included in the randomForest package is infor-

mation about the importance of the predictor variables,
which includes a measure of how much MSE increases
when that variable is randomly permuted while all others
are left unchanged. For the case of our most successful
centered-window moving average random forest, the
most important 12 predictors were all the averaged
features. This confirms that smoothing the features con-
siderably improves the model, over including only the
regular, more noisy, non-smoothed features in the model.

B. Linear Regression

All the subsequent methods have been implemented
with the scikit-learn package for python. Substantially,
they only made very few improvements on the prediction
and were a lot less effective than the Random Forests.
One of the first things we tried is to predict the PDRS
score with a linear regression. Two types of regression
have been tried: a regression per patient and a regression
on the whole dataset. In all cases, the data has been
preprocessed to have mean 0 and variance 1. We have
also used LASSO, Ridge and Linear selection to test the
importance of each feature and select the most important
ones. Given the size of the dataset, we were able to
implement a Leave One Out Cross validation too. As a
baseline, we first took the prediction by the mean PDRS
score 29.02 over all the data. This gave a RMSE of
10.70. A regression on the whole dataset yielded worst



3

results: a RMSE of 10.90. For the personalized linear
regression, quick plots have shown us that this method
wasn’t consitent. For some patients it worked admirably,
for others it literally predicted the opposite of the trend.
The following two graphs will give the intuition why that
happened. The green dots are the PDRS score and the
blue dots one of the features. The red line is the linear
regression of that feature. We can see that in the first
graph, the linear trend of the feature goes is strongly
correlated with the pdrs trend, but, in the second graph,
this same features is negatively correlated to the trend.
In the third case, the features are totally unpredictive of
the pdrs score.

C. Support Vector Regression

We used this technique. We did a grid search on the
parameters C, Epsilon, gamma and the type of Kernel.
At best, we had a RMSE of 10.2 which is a very scarce
improvement on the prediction by the prediction by the
mean. As a result of our initial poor results, we also
implemented a classification problem with SVMs and a
grid search too. This gave better results: we were able to
predict the right PDRS score to the right bucket 50% of
the time. Nevertheless, by looking at the errors, we saw
that whereas most of them were off by only one bucket
which isn’t a huge problem, a significant number of them
were predicted further than 2 buckets. This hampered our
confidence in the results.

D. Hidden Markov Models

By trying further to simplify the problem, we also
tried to predict the trend of the PDRS between two
measures given the features. This gave two possible
states : “getting better” and “getting worse”. We would
first train the model on the data seen and then, given
the estimation, predict the sequence of states between
“getting better” and “getting worse”. As in the linear
regression, we trained one model on all the patients
and also one model for each patient. We also found
similar results to the Linear Regression: some patients’
predictions were very accurate but others were totally
off.

III. PATIENT VOICE ANALYSIS DATASET

Originally, we started working with a different dataset,
one not yet released to the public. This section includes
description of this dataset, our analysis and work with
it, and a discussion of its limitations and why we began
working with the UCI dataset.

The Patient Voice Analysis (PVA) dataset contains
voice recordings of voice phonations (3-30 seconds

Fig. 2. Linear interpolation of the features vs the pdrs score in a
good case

Fig. 3. Linear interpolation of the features vs the pdrs score in a bad
case

Fig. 4. Linear interpolation of the features vs the pdrs score in anoter
bad case
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long of a sustained voiced ‘ah’), self-reported symptom
assessment (PDRS - Parkinson’s Disease Rating Scale
as well as Hoehn & Yahr stage classification) and
demographic information about the caller.

The PDRS scale, in this dataset, is a partial version
of the clinically accepted, widely-used UPDRS score, in
which the answers to 17 questions about the patient’s
symptoms (answerable on a 0-4 scale) are scaled and
summed to be on a 0-100 scale.

The training data set also includes 38 features ex-
tracted from the voice recordings. 26 of these features
were cepstral coefficients and their derivatives, while 5
features dealt with standard audio features (fundamental
frequency and RMS power measures), while three fea-
tures were developed previously to characterize voices
of Parkinson’s patients [7], [8].

Each row in the dataset corresponded to one report
from a Parkinson’s patient. There were 365 users total,
with some repeat calls, for a total of 390 rows. There
was little to change to be able to work with the dataset.
There were 15 rows which had no voice feature data
available (the call quality was especially poor), and our
team removed them from all analyses.

While there is more data available, it was held out by
the providers of the dataset as a test set, eventually to be
used to test competitor-submitted models in the public
competition.

Our goal with this dataset was to predict the PDRS
score from the voice features. Below we present various
strategies.

A. Distribution of dataset features

The mean PDRS = 21.28, and variance = 122.57. The
variance is the baseline predictor we choose: we use as
measure the Root Mean Square Error with the PDRS,
which is 11.07. Predicting the mean is the most nave way
of predicting the PDRS-score. We will try to improve
upon 11.07. See Figure 1 for the distribution of PDRS
scores.

B. Support Vector Regression

As with the first dataset, we implemented a grid search
on the SVR with a selection of features to find the best
prediction. In this case, we arrived at a variance of 108
which is a slight improvement on the baseline prediction.

C. Prediction of the Hoehn and Yahr scalse

We also implement a SVM for the Hoehn and Yahr
scale. We had pretty good results : error rate of 38%.
And the when there were errors, they weren’t too far
away from the reality.

Fig. 5. The distribution of the PDRS scores is fairly Gaussian.

D. Random Forests

Similarly as for the other dataset, three parameters
were modified for the Random Forests calculation (again,
using the randomForest package in R): the number of
trees trained (a range of 500-3000 was tested), the
number of samples to include in the training of each tree
(a range of 300-350 samples was tested), and the number
of variables randomly sampled at each split of the tree (a
range of 10-15 was tried). The value of RMSE incuded
in the randomForest package was used. The smallest
RMSE from these tests was 10.71, with the following
parameters: 503 trees, 12 number of variables at each
split, with 322 samples to build each tree.

E. K-Means Clustering

We wanted to try an unsupervised learning method
on the data. Instead of thinking of the problem as a
regression problem, we tried to cluster the the data
into buckets with similar PDRS scores. The K-means
clustering algorithm was used for this. We tried several
iterations, varying a number of parameters each time
- number of clusters (4 - 12), method of initialization
(random, K-means++) and sets of features (all features,
audio features only, PCA-selected features). To evaluate
our results, we used several standard metrics - Homo-
geneity and Completeness Scores, Silhouette coefficient
[10] and the Adjusted Rand Index [11]. Clustering was
not very effective. We had low correlation scores for all
of our runs. Using the k -means++ initialization method,
4 clusters and all audio features, we got a low silhouette
score of 0.119 indicating poorly defined clusters.
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F. Data Limitations

As we worked with the dataset, some of its limita-
tions were revealed, both uncovered by us and by the
Synapse.org PVA team.

There was an issue with the self-reported PDRS
scores. While some of the repeat callers have consistent
scores, some have a potentially problematically large
range. For instance, one participant called three days in
a row, and during these days, reported scores of 25, 27,
and 19. Also noted is that two 0’s in repeated PDRS
score come from a user who on his first call, reported a
PDRS score of 23. The possibility of unreliable data,
or data which may not be consistent with the actual
condition of the disease bears weight on the overall
possible reliability of our model.

We were also notified by the Synapse.org PVA team
that they felt the extracted voice features by several
methodological issues. The audio was collected through
the Twilio voice API, and so were not of high quality,
limiting their use as predictors.

Furthermore, the dataset was small. Given the speed
with which data like this can be collected - our data was
collected over the course of only two weeks in January
2014 - more data could have improved the predictive
power of our models.

We conjectured that including some healthy controls
would improve our model, so we recruited volunteers
who perform the 10-second vowel phonation, which we
recorded with a Zoom H2 Handy recorder. After elimina-
tion of those volunteers who had unusable data (mostly
due to wind noise), we included 20 healthy controls in
the dataset, calculated the MFCC’s and recalculated the
MFCC’s for the original data, and tested if an SVM
classifier could predict which were the controls. It had
perfect accuracy, more than likely due to the difference
in audio quality. While we could have reduced the audio
quality of our recordings to be comparable to those made
through the Twilio API, given the other limitations of the
dataset, we chose to move our analysis to a more optimal
dataset, suggested by a member of the Synapse.org PVA
team.

The last limitation of the dataset that we found is that
the features are highly correlated. We ran an SVD on
the features matrix and found that 99% of the energy of
spectrum was contained in the first eigenvalue. Almost
all features were linearly related. We plotted 6 here the
first vs the second feature.

IV. DISCUSSION

Though both datasets had their limitations, we were
pleased with our results for the UCI dataset - the original

Fig. 6. Plot of the first vs the secon feature.

prediction from the researchers who put together this
dataset was an RMSE of 7.5. By including moving
averages to a Random Forest model, we improved model
accuracy to an RMSE of 2. While this strategy resulted
by far in the biggest gains in accuracy, smaller gains
were made by tweaking the parameters of the Random
Forest model, as well as using feature selection methods,
specifically, LASSO.

Certainly our results would be even more convincing if
the UPDRS score associated with every voice recording
was validated by a clinician. Due to likely numerous
reasons (e.g. expenses, convenience), only 3 UPDRS
scores per person were evaluated by a clinician, taken
at the beginning, middle, and end of the treatment.
The rest of the scores were researcher-created linear
interpolations between these three scores. In reality, the
UPDRS scores are likely much more noisy; and working
with real measures would have resulted in a much more
meaningful model.

This limitation from the UCI dataset aside, we are far
more confident in our models of the UCI dataset than
we were with the original dataset of this course, the
PVA dataset. While our models resulted in a prediction
accuracy that slightly improved the baseline prediction,
these gains were slight. Over the course of working with
the dataset, it became clear to us that the quality of the
data itself likely limited the potential prediction accuracy
of the model - PDRS scores were user-reported and
errors in reporting existed, and the quality of the voice
recordings from which the features were drawn was poor.
Furthermore, the dataset was small.

However, we discussed our perception of these limi-
tations (as well as our gains in prediction accuracy with
our models) with the PVA Synapse.org team, and are
hopeful that our insights and commentary prove useful
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to them as they make final changes before opening this
dataset to a public competition.

V. FUTURE WORK

For furture work, we need to do the following:
• Try random forests with moving averages on the

PVA dataset in order to see if it can help get better
results on this data.

• Check for over fitting - we only have 42 patients.
so we can check on more patients.

• Verify on non ill patients that the PDRS score is
zero (or very low).

• There is also a great work to do in collecting
more real PDRS data points. Right now we use
interpolated PDRS scores. We should have the real
PDRS score for each voice recording in order to be
confident in our prediction capabilities.

VI. CONCLUSION

This paper presented our work on predicting the
accuracy of Parkinson’s Disease severity from voice
features. Our most successful accuracy resulted from
including voice features smoothed by a moving average
in a Random Forest model using the UCI dataset.

The body of research that predicts PD severity from
voice features is moving in a direction such that, perhaps
in the near future, PD patients will be able to monitor the
progression of their PD by simply recordings their voice,
without the need for a trip to the clinician. While several
hurdles remain to implement this kind of technlogy at
scale (as evidenced by the PVA dataset), the outlook
seems promising.

We are pleased to have contributed to the PVA project,
and to have improved the prediction accuracy on the UCI
dataset.
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